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ABSTRACT

This paper describes two methods for detecting word seg-
ments and their morphological information in a Japanese
spontaneous speech corpus, and a method for accurately tag-
ging a large spontaneous speech corpus. In this paper, we
show that by using semi-automatic analysis we can expect a
precision of over 99% for detecting and tagging short words
and 97% for long words; the two types of words comprising
the corpus.

1. INTRODUCTION

The “Spontaneous Speech: Corpus and Processing Technol-
ogy” project is sponsoring the construction of a large spon-
taneous Japanese speech corpus, Corpus of Spontaneous
Japanese (CSJ) [1]. The CSJ is a collection of monologues
and dialogues, the majority being monologues such as aca-
demic presentations and simulated public speeches. Simu-
lated public speeches are short speeches presented specifi-
cally for the corpus by paid non-professional speakers. The
CSJ includes transcriptions of the speeches as well as au-
dio recordings of them. One of the goals of the project is to
detect two types of word segments and corresponding mor-
phological information in the transcriptions. The two types
of word segments were defined by the members of The Na-
tional Institute for Japanese Language and are called short
word and long word. The term short word approximates a
dictionary item found in an ordinary Japanese dictionary,
and long word represents various compounds. The length
and part-of-speech (POS) of each are different, and every
short word is included in a long word. If all of the short
words in the CSJ were detected, the number of the words
would be approximately seven million. That would be the
largest spontaneous speech corpus in the world. So far, ap-
proximately one tenth of the words have been manually de-
tected, and morphological information such as POS cate-
gory and inflection type have been assigned to them. The
accuracies of the manual detection and tagging of short and
long words in one tenth of the CSJ are greater than 99.8%
and 97%, respectively. As it took over two years to tag
one tenth of the CSJ accurately, tagging the remainder with
morphological information would take about twenty years.
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Therefore, the remaining nine tenths of the CSJ must be
tagged automatically or semi-automatically.

In this paper, we describe methods for detecting the two
types of word segments and corresponding morphological
information. We also describe how to tag a large sponta-
neous speech corpus accurately. Henceforth, we call the two
types of word segments short word and long word respec-
tively, or merely morphemes. We use the term morphologi-
cal analysis for the process of segmenting a given sentence
into a row of morphemes and assigning to each morpheme
grammatical attributes such as POS category.

2. MODELS AND ALGORITHMS

This section describes two methods for detecting word seg-
ments and their POS categories. The first method uses mor-
pheme models and is applied to detect any type of word seg-
ment. The second method uses a chunking model and is
only applied to detect long word segments.

2.1. Morpheme Model

Given a tokenized test corpus, the problem of Japanese mor-
phological analysis can be reduced to the problem of assign-
ing one of two tags to each string in a sentence. A string is
tagged with a 1 or a O to indicate whether it is a morpheme.
When a string is a morpheme, a grammatical attribute is
assigned to it. A tag designated as a 1 is thus assigned
one of a number, n, of grammatical attributes assigned to
morphemes, and the problem becomes to assign an attribute
(from 0 to n) to every string in a given sentence.

We defined a model that estimates the likelihood that a
given string is a morpheme and has the grammatical attribute
i(1 < i < n) as a morpheme model [2]. We implemented
this model within an maximum entropy (ME) framework
[3]. The features used in our experiments are described in
Section 3.1.

Given a sentence, for each length of string in the sentence,
probabilities of n tags from 1 to n are estimated by using the
morpheme model. Among every possible division of mor-
phemes in the sentence, an optimal one is found by using the



Viterbi algorithm. The optimal division is defined as a par-
ticular division of morphemes with grammatical attributes
that maximize the product of the probabilities estimated for
each morpheme in a division of morphemes in a sentence.
For example, the sentence “JERE L AEMTIZ DV THBEEV 72
L £97 in basic form as shown in Fig. 1 is analyzed as
shown in Fig. 2.

Basic form Pronunciation

0017 00051.425-00052.869 L:

(F 2—) (FT—)

T REF AT r—54vh4t*
0018 00053.073-00054.503 L:

[ZoWnWT =94 5

0019 00054.707-00056.341 L:
BifLwiLET FNF AT YT A

“Well, I'm going to talk about morphological analysis.”

Fig. 1. Example of transcription.

Short word Long word
Word POS Word POS
JERE (form) Noun | JZREAMHT (morphological analysis) Noun
H (element) Suffix
f#4T  (analysis) Noun
Iz PPP IZ2onT (about) PPP
DV (relate)  Verb
i PPP
B Prefix | $ifi L7z L(talk) Verb

afi Lo (talk)  Verb

V72 L(do) Verb

E3l AUX | ¥§ AUX
PPP : post-positional particle , AUX : auxiliary verb , ADF : adverbial form

Fig. 2. Example of morphological analysis results.

2.2. Chunking Model

Our method uses two models, a morpheme model for short
words and a chunking model for long words. After detecting
short word segments and their POS categories by using the
former model, long word segments and their POS categories
are detected by using the latter model. We define four labels,
as explained below, and extract long word segments by esti-
mating the appropriate labels for each short word according
to an ME model. The four labels are listed below:

Ba: Beginning of a long word, and the POS category of
the long word agrees with the short word.

Ia: Middle or end of a long word, and the POS category
of the long word agrees with the short word.

B: Beginning of a long word, and the POS category of the
long word does not agree with the short word.

I: Middle or end of a long word, and the POS category of
the long word does not agree with the short word.

A label assigned to the leftmost constituent of a long word
is “Ba” or “B”. Labels assigned to other constituents of a
long word are “Ia”, or “I”. The short words shown in Fig. 2,
for example, are labeled as shown in Fig. 3. The labeling
is done deterministically from the beginning of a given sen-
tence to its end. The label that has the highest probability as
estimated by an ME model is assigned to each short word.
The features used in our experiments are described in Sec-
tion 3.1.

Short word Long word
Word POS Label | Word POS
T Noun Ba | JEREZEMAT Noun
F# Suffix I
fig At Noun Ia
iz pPPP Ba 22OV T PPP
D Verb I
T PPP la
B Prefix B BiEFLwZL  Verb
ah L Verb Ia
Ww7zL  Verb la
ESr AUX Ba EScH AUX
PPP : post-positional particle , AUX : auxiliary verb

Fig. 3. Example of labeling.

When a long word that does not include a short word that
has been assigned the label “Ba” or “Ia”, this indicates that
the word’s POS category differs from all of the short words
that constitute the long word. Such a word must be esti-
mated individually. In this case, we estimate the POS cate-
gory by using transformation rules. The transformation rules
are automatically acquired from the training corpus by ex-
tracting long words with constituents, namely short words,
that are labeled only “B” or “I”. A rule is constructed by
using the extracted long word and the adjacent short words
on its left and right. For example, the rule shown in Fig. 4
was acquired in our experiments. The middle division of
the consequent part represents a long word “ T &” (auxil-
iary verb), and it consists of two short words “T” (post-
positional particle) and “#” (verb). If several different rules
have the same antecedent part, only the rule with the high-
est frequency is chosen. If no rules can be applied to a long
word segment, rules are generalized in the following steps.
1. Delete posterior context
2. Delete anterior and posterior contexts
3. Delete anterior and posterior contexts and lexical entries.

If no rules can be applied to a long word segment in any
step, the POS category noun is assigned to the long word.

3. EXPERIMENTS AND DISCUSSION

3.1. Experimental Conditions

In our experiments, we used 744,204 short words and
618,538 long words for training, and 63,037 short words and
51,796 long words for testing. Those words were extracted
from one tenth of the CSJ that already had been manually
tagged. The training corpus consisted of 338 speeches and
the test corpus consisted of 19 speeches.

Transcription consisted of basic form and pronunciation,
as shown in Fig. 1. Speech sounds were faithfully tran-
scribed as pronunciation, and also represented as basic
forms by using kanji and hiragana characters. Lines be-
ginning with numerical digits are time stamps and represent
the time it took to produce the lines between that time stamp
and the next time stamp. Each line other than time stamps
represents a bunsetsu, which is a Japanese phrasal unit. In
our experiments, we used only the basic forms.



Entry
POS
Label

Anterior context

Target words

Posterior context

Anterior context

Long word

Posterior context

1T > (it, go)
Verb
Ba

T (te) & (mi, try)
PPP  Verb
B I

72\ (tai, want)
AUX
Ba

=

17> (it, go)
Verb

T H (temi, try)
AUX

72\ (tai, want)
AUX

Antecedent part

Fig. 4. Example of transformation rules.

Since there are no boundaries between sentences in the

bles, OOV indicates Out-of-Vocabulary rates.

Consequent part

In Table 2,

corpus, we selected the places in the CSJ that are auto-
matically detected as pauses of 500 ms or longer and then
designated them as sentence boundaries. In addition to
these, we also used utterance boundaries as sentence bound-
aries. These are automatically detected at places where short
pauses (shorter than 200 ms but longer than 50 ms) fol-
low the typical sentence-ending forms of predicates such as
verbs, adjectives, and copula.

In the CSJ, bunsetsu boundaries, which are phrase bound-
aries in Japanese, were manually detected. Fillers and dis-
fluencies were marked with the labels (F) and (D). In the ex-
periments, we eliminated fillers and disfluencies but we did
use their positional information as features. We also used as
features, bunsetsu boundaries and the labels (M), (O), (R),
and (A), which were assigned to particular morphemes such
as personal names and foreign words. Thus, the input sen-
tences for training and testing were character strings with-
out fillers and disfluencies, and various labels and bound-
ary information were attached to them. Given a sentence,
for every string within a bunsetsu and every string appear-
ing in a dictionary, the probabilities were estimated by us-
ing the morpheme model. The output was a sequence of
morphemes with grammatical attributes, as shown in Fig. 2.
We used the POS categories in the CSJ as grammatical at-
tributes. We obtained 14 major POS categories for short
words and 15 major POS categories for long words.

The features we used with morpheme models in our ex-
periments are basically as same as those that Uchimoto et
al. used [4]. The main difference was in boundary infor-
mation that indicated whether the left and right side of the
target strings were boundaries. Bunsetsu boundaries and po-
sitional information of labels such as fillers were used as
features. We used only those features that were found three
or more times in the training corpus.

In our experiments using the chunking model, we used
the following information as features on the target word: a
word and the POS category to which it belonged, and the
same information on the four closest words, the two on the
left and the two on the right of the target word. Bigram
and trigram words that included a target word plus bigram
and trigram POS categories that included the target word’s
POS category were used as features. In addition, bunsetsu
boundaries were used.

3.2. Results and Discussion

3.2.1. Experiments Using Morpheme Models

Results of the morphological analysis obtained by using
morpheme models are shown in Table 1 and 2. In these ta-

OOV was calculated as the proportion of word and POS cat-
egory pairs that were not found in a dictionary to all pairs in
the test corpus. Recall is the percentage of morphemes in the
test corpus for which the segmentation and major POS cat-
egory were identified correctly. Precision is the percentage
of all morphemes identified by the system that were iden-
tified correctly. The F-measure is defined by the following
equation.

2 X Recall x Precision

F — measure = —
Recall + Precision

Table 1. Accuracies of word segmentation.

Word Recall Precision F (0]0)%
Short| 97.47% (53:557) | 97.62% (g32535) [97.54 ][ 1.66%
99.23% (823)| 99.11% ($22°)|99.17|| 0%
Long | 96.72% (377g¢)| 95.70% (33:55¢)[96.21(5.81%
99.05% (21:308)| 98.58% (3129¢)|98.81|| 0%
Table 2. Accuracies of word segmentation and POS tagging.
Word Recall Precision F (0]6)%
Short| 95.72% (g3557) | 95-86% (g3a75)|95.79]2.64%
97.57% (3355 205) 97.45% (8129)197.51(| 0%
Long| 94.71% (g‘f 7o5)| 93.72% (53335 94.21]]6.93%
97.30% (32:350)| 96.83% (259%)|97.06|| 0%

Tables 1 and 2 show that accuracies would improve sig-
nificantly if there were no unknown words. Especially, the
accuracy for long words was close to that in the current cor-
pus. This indicates that all morphemes of the CSJ could be
analyzed accurately if there were no unknown words.

Next, we extracted words that were detected by the mor-
pheme model but were not found in a dictionary, and in-
vestigated the percentage of unknown words that were com-
pletely or partially matched to the extracted words with their
context. This was 77.6% (1,293/1,667) for short words, and
80.6% (2,892/3,590) for long words.

The accuracy of automatic morphological analysis was
lower than that of manual morphological analysis. To im-
prove the accuracy for the whole corpus we take a semi-
automatic approach. We assume that the smaller the proba-
bility is for an output morpheme estimated by a model, the
more likely the output morpheme is wrong, and we exam-
ine output morphemes in ascending order of their proba-
bilities. We investigated the relationship between the per-
centage of morphemes examined manually and the preci-
sion obtained after detected errors were revised. The result
is shown in Fig. 5. In this figure, “short_without UKW”,
“long_without_ UKW?”, “short_with UKW, and “long with _
UKW?” represent the precision for short words detected as-
suming there were no unknown words, the precision for long
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Fig. 5. Relationship between the percentage of morphemes exam-
ined manually and the precision obtained after detected errors were
revised (when not only morphemes whose probabilities are under
a threshold but also their adjacent morphemes are examined).

words detected assuming there were no unknown words,
precision of short words including unknown words, and
precision of long words including unknown words, respec-
tively. Precision represents the precision of word segmen-
tation and POS tagging. If unknown words were detected
and put into a dictionary by the method described in the
third paragraph in this section, the graph for short words
would be drawn between the graphs “short_without UKW
and “short_with. UKW, and the graph for long words
would be drawn between the graphs “long without UKW”
and “long_with_UKW”. Based on test results, we can expect
over 99% precision for short words and over 97% precision
for long words in the whole corpus when we examine 10%
of output morphemes in ascending order of their probabili-
ties.

3.2.2. Experiments Using Chunking Models

Results of the morphological analysis of long words ob-
tained by using a chunking model are shown in Tables 3 and
4. The first and second lines show the accuracies obtained

Table 3. Accuracies of long word segmentation.

Model Recall Precision F
Morph| 96.72% (32752)| 95.70% (33:555)[96.21
Chunk | 97.55% (37955)| 97.41% (33555)|97.48
| Chunk| 98.74% (31750)| 98.63% (31552)]98.69]
Table 4. Accuracies of long word segmentation and POS tagging.
Model Recall Precision F
Morph| 94.71% (£7755)| 93.72% (55535) 9421

Chunk | 95.52% (£:215)| 95.38% (£2:372)|95.45
98.44]

| Chunk| 98.50% (31755)] 98.39% (3i%ss

when OOVs are 5.81% and 6.93%, respectively. The third
lines show the accuracies obtained when we assumed that
the OOV for short words was 0% and there was no error for
detecting short word segments and their POS categories.

The accuracy obtained by using the chunking model was
one point higher in F-measure than that obtained by using
the morpheme model, and it was very close to the accuracy
achieved for short words. This result indicates that errors
newly produced by applying a chunking model to the re-
sults obtained for short words were slight, or errors in the
results obtained for short words were amended by apply-
ing the chunking model. This result also shows that we can
achieve good accuracy for long words by applying a chunk-
ing model even if we do not detect unknown words for long
words and do not put them into a dictionary, though we must
do so when we apply a morpheme model to long words. If
we could improve the accuracy for short words, the accu-
racy for long words would improve to over 98 points in F-
measure.

4. CONCLUSION

This paper described two methods for detecting word seg-
ments and their POS categories in a Japanese spontaneous
speech corpus, and a method for tagging a large sponta-
neous speech corpus accurately. The first method is applica-
ble to detecting any word segments. We found that about
80% of unknown words could be semi-automatically de-
tected by using this method. The second method is appli-
cable when there are several definitions of word segments
and their POS categories, and one type of word segments
includes other types of word segments. We found that better
accuracy could be achieved by using both methods than by
using only the first method alone.

There are two types of word segments, short words and
long words, in a large spontaneous speech corpus, CSJ. We
found that the accuracies of automatic morphological anal-
ysis for the short and long words were 95.79 and 95.45, re-
spectively, in F-measure. Although the OOV for long words
was much higher than that for short words, almost the same
accuracies was achieved for both words by using our pro-
posed methods. We also found that we can expect over
99% and 97% of precision, respectively, for the two types
of words in the whole corpus when we examine 10% of out-
put morphemes in ascending order of their probabilities as
estimated by the proposed model.
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